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PREFACE
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I

NUMERICAL ANALYSIS OF HARBOR RESONANCE

RESPONSE IN EAST CHANNEL, LOS ANGELES HARBOR

PART I: INTRODUCTION

Objective

1. The objective of this study was to investigate the comparative

response of East Channel of the Port of Los Angeles (Figure 1) to long-

period wave excitation for the existing configuration and for three

proposed dredging alternatives near East Channel. Amplification factors

were computed as a function of period at the north end of East Channel

and the normalized maximum current velocity was computed at the entrance

to East Channel and at the Bulk Loading Terminal, berth 50. These data

E A S T C H A N N E 
-. . .

ILM

Figure 1. Site map
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were plotted to ascertain whether or not significant differences in

channel resonance might occur that would potentially impact (either

positively or negatively) ship mooring conditions.

2. A previous harbor oscillation study of the Port of Los

Angeles* used the same numerical model; however, the previous study con-

sidered effects of a more extensive harbor improvement plan and did not

include the non-Federal dredging (NFD) investigated herein.

Improvement Plans

3. The following three proposed dredging plans were considered:

Designation Description

Phase I-B Federal Project for harbor deepening
and associated non-Federal dredging
retaining the submerged bar south
of pier 1

Phase I-B (NFD-l) Phase I-B plan with the submerged bar
south of pier I dredged to -45 ft
mllw

Phase I-B (NFD-2) Phase I-B plan with approximately
70 percent of the seaward end of
the submerged bar south of pier 1
dredged to -35 ft mllw

Figures 2-5 illustrate the base plan and the three dredging alternatives.

4. Waves from a southerly direction with periods from 60 to 600

sec were considered. Wave amplitudes and current velocities were cal-

culated at 1- to 10-sec intervals, dependent on the period range. Res-

onant peaks were defined by using incident wave periods in 0.25-sec

increments.

* J. R. Houston. 1977 (Feb). "Los Angeles Harbor Numerical Analysis

of Harbor Oscillations," Miscellaneous Paper H-77-2, U. S. Army Engi-
neer Waterways Experiment Station, CE, Vicksburg, Miss.
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Figure 2. Base plan
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Figure 3. Phase I-B plan
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Figure 4. Phase I-B (NFD-1) pl.an
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Figure 5. Phase I-B (NFD-2) plan
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PART II: NUMERICAL MODEL

5. The response of East Channel to long-wave excitation was de-

termined by using a hybrid finite-element numerical model developed at

the Massachusetts Institute of Technology.* The model solves the follow-

ing generalized Helmholtz equation:

2
V * [h(x,y)Vp(x,y)] + p 4(x,y) = 0

g

where V is the gradient operator, h(x,y) is the water depth, 4(x,y)**

is the velocity potential defined by U(x,y) = -V (x,y) , with U(x,y)

being a two-dimensional velocity vector, w is an angular frequency,

and g is the acceleration due to gravity. Equation 1 governs small

amplitude undamped oscillations of long waves. It has been further as-

sumed that the flow is irrotational.

6. The boundary condition along the shoreline and in the harbor

is that the normal component of the velocity be equal to zero.

7. The Helmoltz equation:

2 2

V 2(x,y) + 2 1(x,y) = 0 (2)

is the governing equation for a constant-depth ocean region outside the

basin.

8. For a harbor in a semi-infinite ocean with a straight coastline

there are incident, reflected, and scattered waves. The scattered wave

has a velocity potential s given by

H. S. Chen and C. C. Mei. 1974 (Aug). "Oscillations and Wave

Forces in an Offshore Harbor (Applications of the Hybrid Finite Ele-
ment Method to Water-Wave Scattering)," Report No. 190, Massachusetts

Institute of Technology, Cambridge, Mass.
•* For convenience, symbols and unusual abbreviations are listed and

defined in the Notation (Appendix A).
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s = cnHn(kr) cos no (3)
n=O

where a are unknown coefficients and H (kr) are Hankel functions of

n n
the first kind of order n .

9. s satisfies the radiation condition that the scattered wave

must behave as an outgoing wave at infinity. This condition is known

as the Sommerfeld radiation condition and may be expressed mathematically

as follows:

lim - =0
ir- - N rk) s= 0 (4)

10. Chen and Mei used a calculus of variations approach and ob-

tained a Euler-Lagrange formulation of the boundary value problem. The

following functional F with the property that it is stationary with re-

spect to arbitrary first variations of 4(x,y) was constructed by Chen

and Mei:

h()2 _ 2 2 ]

F() = ff 1/2 [h(V4) - ] dA

a OR ) 1 0 R - 9
+ 1/2 §Lh(oR 01 P) a  da - a a @n da

)- !a + § 3 naR [- da

5 ia+3nh0 1  n 1a a j

where

A = region inside the harbor

§ = line integral

OR = far field velocity potential

= velocity potential of the incident wave

n a = unit normal vector outward from region A

a = boundary of region AIa = total velocity potential evaluated on boundary a
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11. Proof was given by Chen and Mei that the stationarity of this

functional is equivalent to the original boundary value problem.

12. The integral equation obtained from extremizing the functional

is solved by using a finite-element method. This method is a technique

of numerical approximation that involves dividing a domain into a number

of nonoverlapping subdomains which are called elements.

13. The solution of the problem is approximated within each ele-

ment by suitable interpolation functions in terms of a finite number of

unknown parameters. These unknown parameters are the values of the

field variable p(x,y) at a finite number of points whiLh are called

nodes. The relations for individual elements are combined into a system

of equations for all unknown parameters.

14. In the region outside the basin, the velocity potentials

are solved analytically in terms of unknown coefficients. The region is

considered a single element with an "interpolation function" given by

Equation 3. The infinite series is terminated at a finite value such

that the addition of further terms does not significantly influence the

calculated values of O(x,y) . The resulting equation is combined with

the system of equations for unknown parameters at nodal points within

the basin and this complete system is solved using Gaussian elimination

matrix methods.

15. n(x,y) is related to O(x,y) through the linearized dynamic

free surface boundary condition

i(xy) -1 (x,y) (6)
g at

16. The horizontal velocity components have the following form:

u(x,y) = - l n(x,y) v(xy) - n(XY)

17. The hybrid finite-element method (so named by Chen and Mei

because the method involves the combination of analytical and finite-

element numerical solutions) is a steady-state solution of the boundary

value problem. The steady-state response of a harbor to an arbitrary

9



forcing function can be easily determined within the framework of a

linearized theory.

18. Plate 1 shows the finite-element grid used to portray East

Channel and the surrounding harbor area. Grid modifications needed to

represent the Federal project and the non-Federal dredging plans were

easily accomplished by merely changing water depths in the dredged areas.

10



PART III: RESULTS

19. Wave-height amplification at a station inside the harbor is

defined as the wave height at the station divided by twice the incident

wave height. This definition of amplification factor is traditional and

is a result of the fact that the standing wave height for a straight

coast with no harbor (and total reflection) would be twice the incident

wave height due to superposition of incident and reflected waves. Wave-

height amplification for all plans at sta 1 (north end of East Channel)

over the 60- to 600-sec period range is illustrated in Plates 2-5. Sta-

tion locations are shown in Figure 6. Normalized maximum current

/ I
/ I

0 L 

"1t BERTH I

Figure 6. Station locations

velocity (NMCV) as a function of wave period is shown in Plates 6-9 for

sta 2 (entrance to East Channel). The plotted current velocity multiplied

by the incident wave height in feet (or metres) gives velocity in units of

feet per second (or metres per second). The computed velocities have no

vertical component or variation since linear long-wave theory is used.

The velocity plotted is the maximum that would occur over a wave period.
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NMCV results for sta 3 (berth 50, Bulk Loading Terminal) are shown in

Plates 10-13.

20. Plates 2-5 show that the calculated amplification at sta 1

in East Channel for the base plan was less than 4 over the 60- to 600-sec

period range with the exception of the fundamental mode of oscillation

centered at 360.5 sec. Resonant response in the 60- to 200-sec period

range consisted of lower, relatively broad peaks centered at 66, 92, 106,

and 134 sec. The resonant response for the Phase I-B, I-B w/NFD-I, and

I-B w/NFD-2 plans was similar to the base plan at periods less than the

fundamental mode of oscillation except for some shifts in central fre-

quency of the peak response. For the fundamental mode of oscillation

near 360 sec, significant differences in the amplification magnitude

occurred. Central periods (T) and amplitudes of maximum wave-height

amplification (R) for the base plan and the three harbor improvement

plans were:

Phase I-B Phase I-B
Base Phase I-B w/NFD-l w/NFD-2

T, sec R T, sec R T, sec R T, sec R

66.0 2.7 66.0 2.9 66.0 2.9 66.0 3.0

92.0 2.6 92.0 2.4 92.0 2.2 92.0 2.2
106.0 3.0 106.0 2.9 106.0 2.4 106.0 2.7
134.0 3.6 128.0 4.2 118.0 3.9 127.0 4.2

360.5 45.4 353.0 34.2 334.5 76.5 348.0 42.2

Amplification for modes of oscillation at periods less than that of the

fundamental mode was generally broad and not sharply peaked. Amplifica-

tion for the fundamental mode was sharply peaked for all plans. However,

the bandwidth of the resonant mode decreased for the Phase I-B w/NFD-I

plan which had significantly increased amplification. The bandwidth

for each plan of the resonant amplification for the fundamental mode at

a level equal to 25 percent of the maximum amplification was:

25 Percent

Period Peak Amplification Bandwidth
Plan sec Amplification Level sec

Base 360.5 45.4 11.4 13

Phase I-B 353.0 34.2 8.6 9

(Continued)
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25 Percent

Period Peak Amplification Bandwidth

Plan sec Amplification Level sec

Phase I-B 334.5 76.5 19.1 2
w/NFD-1

Phase I-B 348.0 42.2 10.6 9

w/NFD-2

21. NMCV data for the entrance to East Channel (Plates 6-9) show

a trend similar to amplification data for the north end of the channel.

Peak normalized currents at sta 2 again occurred at the same periods as

maximum amplification at sta 1 except for the base plan where the period

for the NMCV shifted from 66.0 to 64.0 sec. Also, the amplification

peak for the base plan at 134.0 sec was not clearly defined in the NMCV

data and had shifted to 128 sec. Central periods and magnitudes of the

NMCV at sta 2 for each plan were:

Phase I-B Phase I-B
Base Phase I-B w/NFD-l w/NFD-2

T, sec NMVC T, sec NMCV T, sec NMCV T, sec NMCV

64.0 3.5 66.0 3.0 66.0 2.5 66.0 3.0
92.0 3.1 92.0 3.2 92.0 2.5 92.0 2.9

106.0 4.1 106.0 4.1 106.0 2.9 106.0 2.7
128.0 2.3 128.0 2.7 118.0 3.3 127.0 3.3

360.5 57.1 353.0 46.0 334.5 85.0 348.0 57.3

The NMCV data for fundamental modes of oscillation for each plan were

significantly larger in magnitude than for the shorter period

oscillations.

22. For periods less than 200 sec, NMCV at sta 3 adjacent to berth

50 (Plates 10-13) peaked for each plan between 120 and 140 sec with

smaller peaks between 60 and 100 sec. The maximum NMCV at sta 3 for each

plan again occurred at the period of the fundamental oscillation of East

Channel. For the fundamental oscillations, the NMCV was highest for the

base plan and smallest for the Phase I-B w/NFD-2 plan. The NMCV for the

NFD-l plan at berth 50 for the fundamental oscillation was smaller than

for the base plan although the wave-height amplification of the NFD-l

plan was largest for sta 1 in East Channel. The decreased velocity for

the NFD-l plan relative to the base plan shows the influence of the

13



outer harbor area and the plan modification on the fundamental model of

oscillation for the channel. Central periods and magnitudes of the NMCV

at sta 3 for each plan were:

Phase I-B Phase I-B
Base Phase I-B w/NFD-I w/NFD-2

T, sec NMCV T, sec NMCV T, sec NMCV T, sec NMCV

63.0 1.7 63.0 1.5 .. .. .. ..
83.5 2.4 80.0 2.0 80.0 2.1 81.0 2.2
92.5 2.1 88.0 2.0 87.0 2.0 88.0 2.2

134.0 3.7 132.0 3.8 124.0 2.4 129.0 3.0
...... .. -- 140.0 2.4 .. ..

360.0 21.2 353.0 13.9 334.5 17.0 347.5 11.5

23. Contours of wave-height amplification and NMCV vectors for

the 66-, 92-, 106-, 134-, and 360.5-sec modes of oscillation for the base

plan are shown in Plates 14-23. Locations of nodes and antinodes in the

modes of oscillation can easily be seen in the plots. In the base plan

the 66.0-sec oscillation had antinodes at the north end of the channel, at

the center, and just inside the entrance (Plate 14). The 92.0-sec node

had antinodes at the north end of the chanel and at a location approxi-

mately 40 percent of the channel length from the entrance, with the node

slightly inside the entrance (Plate 16). The 106.0-sec mode had anti-

nodes at the north end and at a location approximately 25 percent of the

channel length from the entrance (Plate 18). The node for the 106.0-sec

mode was located at the channel entrance. The 134.0-sec mode had anti-

nodes at the north end of the channel and slightly inside the channel en-

trance (Plate 20). The fundamental mode of oscillation at 360.5 sec de-

veloped with the node near berth 50 and an antinode at the north end of

the channel (Plate 22).

24. Modes of oscillation for the base plan and the three improve-

ment plans considered were quite similar at periods less than the funda-

mental period of oscillation. The fundamental modes, however, are sig-

nificantly different in amplification, period, and half-width of maximum

response. Contours of wave-height amplification and the NMCV vectors for

each of the fundamental modes with each of the three plans are shown in

Plates 24-29. The midpoint of the NMCV vectors represent the point at

14



which the magnitudes were computed (Plates 15, 17, 19, 21, 23, 25, 27,

and 29). In each plan, the peak NMCV for the fundamental mode occurred

at the region of maximum rate of change in surface slope or just inside

the channel entrance.

15



PART IV: CONCLUSIONS

25. Comparison of relative wave-height amplification and NMCV

data for East Channel of the Port of Los Angeles for the base plan and

three proposed improvement plans indicates relatively small differences

in maximum amplification and maximum currents during resonant oscilla-

tions below 200 sec. Channel response varied significantly for the

fundamental mode of oscillation (about 330-360 sec) for each plan. Wave-

height amplification for the fundamental mode at the closed (north) end

of East Channel increased 69 percent relative to the base plan for im-

provement plan Phase I-B w/NFD-l and was a minimum for improvement plan

Phase I-B (25 percent decrease relative to the base plan). Wave-height

amplification for improvement plan Phase I-B w/NFD-2 was decreased

7 percent relative to the base plan.

26. It can be inferred that for the Phase I-B plan where the peak

response for the fundamental mode decreased 25 percent and response for

shorter period resonant oscillations was not significantly changed,

mooring conditions, if changed, should improve. Phase I-B w/NFD-2 plan

results were similar to base plan results except for the shift in period

of the fundamental mode of oscillation (360.5 to 348.0 sec); conse-

quently, mooring conditions should be similar to those for the base plan.

The increase in amplification of the fundamental mode of oscillation

for improvement plan Phase I-B w/NFD-l could have an adverse impact on

mooring conditions if the moored ship exhibited a resonant response at

the same frequency.
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APPENDIX A: NOTATION

a Boundary of region A

A Area of region inside a harbor

F Functional

g Acceleration due to gravity, 32.2 ft/sec2

h Water depth, ft

H Hankel function of the first kind of order n
n
i Imaginary number

k Wave number, ft-

n Integer

n a Unit vector normal to boundary a

r Spherical coordinate, ft

t Time, sec

u Velocity in x-direction, ft/sec

U Velocity vector

v Velocity in y-direction, ft/sec

x Cartesian coordinate, ft

y Cartesian coordinate, ft

& Unknown coefficient
n
V Gradient operator, ft

n Wave amplitude, ft

6 Spherical coordinate, degrees

Total velocity potential, ft 2/sec

a Total velocity potential evaluated on boundary a , ft 2/sec

I Incident velocity potential, ft 2/sec
2

Far field velocity potential, ft /sec
2

Scattered velocity potential, ft /sec

w Angular velocity, radians/sec
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